
LESSON SC 12 – ICR Factory
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP



What will we accomplish!

In this lesson we will create the SC used by the IIoTC.

As we mentioned before, an entity of our project is the Innovative IoT Company (IIoTC) that
provides the installation of the microcontrollers to the cars.

We also mentioned that car fleet owners will be able to list their cars for rent.

But, the ICR SC only has one owner, so we need a SC for IIOTC that handles the creation
(deployment) of multiple ICR SCs (one ICR SC per owner).

So, let's discuss what this SC needs to do:

We will call this SC ICRFactory.

The company will use ICRFactory to deploy ICR SCs for car owners.



OWNER

Factory

BLOCKCHAIN
Creates
ICR SCs IIoTC

Of

ICR A

ICR B

ICR C

OWNER OWNER

Of Of



ICR and ICR Factory

// SPDX-License-Identifier: MIT

pragma solidity 0.8.26;

import {ICRManager} from "./ICRManager.sol";

contract ICR is ICRManager {}

Create a new file called ICR.sol and import ICRManager. Then, using the "is" keyword,
inherit ICRManager to the ICR.

Now let's create the ICRFactory.

Create a new file called ICRFactory.sol and import the ICR SC.

ICRFactory will NOT inherit from the ICR SC, it will just use it as a template to deploy multiple
copies of it.

// SPDX-License-Identifier: MIT

pragma solidity 0.8.26;

import {ICR} from "./ICR.sol";

contract ICRFactory {}



ICR Factory

mapping(uint256 _icrId => address _icrAddress) private s_icrs;
uint256 private s_nextIcrId;

Let's create a mapping that stores the addresses of all ICRs that are deployed from
ICRFactory and a counter that keeps track of the number ICRs created.

Each ICR has an owner and each owner can only own one ICR SC so let's also keep track of each
owner that owns an ICR SC.

mapping(address _user => bool _hasSc) private s_userHasSc;

Before we start creating the main functions, let's create a custom error for a user that is already
owner of an ICR SC.
We should also ensure owners cannot be "0x0" (address(0)) as this will break our functionality
since "0x0" is not an actual account address. (We should also do this in the registerCar
function for the _mc addresses)
Let's also create an event that will be emitted after a new ICR is deployed.

error ICRFactory__AlreadyHasSmartContract(address _user);
error ICRFactory__UserCannotBeAddressZero();

event IcrDeployed(uint256 indexed _icrId, address indexed _icrAddress, address indexed _icrOwner);

Here you can also create the getter functions to retrieve the state variables and mappings since
they are private.



Deploy SC from SC

new ICR();

We first check if _user already has an ICR and if they have, revert with our custom error, else
we proceed to the functionality.

To deploy a SC from another SC we need to use the "new" keyword and define the SC. We also need
the SC code that we want to deploy which in our case is the ICR we imported.

Let's create a function that deploys ICR SCs. We will make it external for now and later we will
add some access control (only company should use it). It will take as input the address of the
account that will be the owner of the ICR SC to be deployed.

function deployICR(address _user) external {
if(s_userHasSc[_user]) {

revert ICRFactory__AlreadyHasSmartContract(_user);
}
if(_user == address(0)) {

revert ICRFactory__UserCannotBeAddressZero();
}
s_userHasSc[_user] = true;
uint256 newIcrId = s_nextIcrId;
ICR icr = new ICR();
s_icrs[newIcrId] = address(icr);
s_nextIcrId++;
emit IcrDeployed(newIcrId, address(icr), icr.getOwner());

}

Next slide



deployICR Explanation

s_userHasSc[_user] = true;

After the checks we update the state of s_userHasSC because _user will now be the owner of a
new ICR.

Next, we define an ID for our new ICR and we make it equal to the s_nextIcrId state variable.
uint256 newIcrId = s_nextIcrId;

Next, we define a new instant of an ICR SC and we name it icr. We deploy the new ICR SC and we
make it equal to the icr instant for the duration of the function.

s_icrs[newIcrId] = address(icr);

We update the s_nextIcrId state variable.

ICR icr = new ICR();

We add the address of the icr to the mapping that keeps track of the ICR SCs deployed using
typecast address(icr).

s_nextIcrId++;

And lastly, we emit the event we created with the ID of the new ICR, the address of the new
ICR and the address of the owner. To get the owner of the new ICR SC we can just use the
function getOwner() we created in the ICRRegistry. This is called external function
call from a SC, and we will explain it more later.

emit IcrDeployed(newIcrId, address(icr), icr.getOwner());



Deploy an ICR with ICRFactory
Compile and deploy the ICRFactory in Remix IDE.

Next choose an account from the account list (remember the address) and use it as a parameter
for the deployICR function.

In the console, look at the deployICR transaction we just made and find the logs.

Remember that at the logs, we can see the events that were emitted during the transaction.

Find the event IcrDeployed event and look at the arguments(args).

You will notice that we have three arguments:

1. ID of the new SC which is 0 because it is the first ICR we deployed

2. Address of the new ICR SC

3. Address of the owner BUT, you will notice that the owner is the address of the
ICRFactory. This is because when we are doing external function calls from another SC, the
msg.sender is the SC that calls the external function and in our ICRRegistry's
constructor, we declare the msg.sender as the owner.



msg.sender on Function Calls
To understand this concept better let's see two examples:

Example 1: User calls a function on a SC. The msg.sender of the call is the user.

User SC 

Function 
Call

msg.sender:
User

User SC A

1st Function 
Call

msg.sender:
User SC B

2nd Function 
Call

msg.sender:
SC A

Example 2: User calls a function on SC A that calls a function on SC B.

In this case two function calls are made in total:

1st: User to SC A (msg.sender is the user)

2nd: SC A to AC B (msg.sender is SC A)



Mitigation

contract ICRRegistry {
// ...
constructor(address _owner) {

require(_owner != address(0), "address 0 cannot be the owner");
i_owner = _owner;

}
// ...

}

To fix this, we first need to make some adjustments to the ICR SC.

In the constructor of the ICRRegistry instead of declaring the msg.sender as the owner, we
can add the owner as a parameter. We should also add a check if the address is not address(0)
since this is an empty address and would break our SC's functionality. You can do that with a
require statement or a custom error.

Next slide

Since we added an argument in the constructor of ICRRegistry and this SC inherits its
properties to ICRManager and then ICR, we need to update both of their constructors so that
they can also accept this argument.
contract ICRManager is ICRRegistry {

// ...
constructor(address _owner) ICRRegistry(_owner) {}

// ...
}



Mitigation (2)
contract ICR is ICRManager {

// ...
constructor(address _owner) ICRManager(_owner) {}
// ...

}

In the example above and in the previous slide, you can see that in the constructor of a SC, we
can specify the constructors from other SCs that are inherited and pass the arguments they
need.

Now, let's update the ICRFactory to pass _user as parameter when the ICR is deployed.

function deployICR(address _user) external {
// … checks
s_userHasSc[_user] = true;
uint256 newIcrId = s_nextIcrId;
ICR icr = new ICR(_user); // Pass _user as parameter here 
s_icrs[newIcrId] = address(icr);
s_nextIcrId++;
emit IcrDeployed(newIcrId, address(icr), icr.getOwner());

}

Now, let's try to compile, deploy and use deployICR again to see that the owner is correctly
defined in the event IcrDeployed.



Application Binary Interface
You will notice that the ICR SC deployed from ICRFactory does not appear in the sidebar under
deployed SCs. However, we can add it manually. In blockchain we can interact with ANY SC that is
already deployed if we just have two things:

1) The address of the SC

2) The ABI of the SC (Application Binary Interface)

What is the ABI of a SC:

The ABI (Application Binary Interface) of a SC is a JSON specification that defines how to interact
with the SC on the blockchain. It acts as a bridge between the SC bytecode (on-chain) and the
external applications or users that interact with it (off-chain).

We will use the ABI of our SC later to call its functions from the microcontroller.

The ABI is generated when the SC is compiled, and we can get it from Remix IDE. We will use the ABI
of the ICR SC to interact with it from Remix IDE.



Interact with ICR Deployed from ICR 
Factory
In the CONTRACT field in DEPLOY AND RUN TRANSACTIONS you
can see a dropdown of all the SCs we compiled.

You can also see the ICR SC. If you cannot see it the go to the
ICR.sol, compile it and check again (do not deploy it).

1. Choose the ICR SC from the dropdown. This will fetch the
ABI of ICR SC.

2. Under DEPLOY button there is an AT ADDRESS button and
next to it there is an input field. Add the address of the
ICR SC that was deployed from ICRFactory (find it in the
logs of the transaction).

3. Press the AT ADDRESS button and the SC will appear under
the Deployed SCs section.

Now you can try to interact with it. For example, check who the
owner is.



Outro
Nice, we created a SC that creates other SCs.

We also learned a few things about external function calls from other SCs and how to interact with
them from anywhere.

In the next lesson we are going to learn about ready to use SCs.


