
LESSON SC 14 – External 
Function Calls

University of West Attica
Department of Electrical and Electronics Engineering

Ioannis Christidis
Christoforos Kachris

Support by Ethereum Foundation ESP



What will we accomplish!

In this lesson we will learn about external function calls and we will make some
changes to our SCs.

Let's start by asking some questions:

What will happen if the owner of an ICR SC registers an address as a microcontroller
account in a car that is not actually a microcontroller?

The owner of the SC could just register an address that is not a microcontroller rendering
the DApp useless, since there will be no guarantee if the cars have a valid microcontroller
address or not.

Is there a way right now in the SC to check if the addresses registered
are indeed microcontroller addresses?

We have a mapping that checks if the address is already used in another car but no way to
check if the address is from a microcontroller account.



Mitigation
Unfortunately, there is no way direct way right now to check if an address is valid.
It is important to understand the weaknesses of our DApp, because once a SC is deployed,
we cannot alter it.
Now, we can think of multiple ways to mitigate this but for the purpose of this course we will
alter our scenario.
The cars will be registered by the IIoTC instead of the ICR owner.
Advantages:
1. The owner will not be able to register invalid addresses.
Disadvantages:
1. We need to trust that the IIoTC will not add invalid addresses. The IIoTC however will

have no benefit from adding invalid addresses since the users will stop using
their DApp, resulting in losing money instead.

2. This mitigation makes our approach more centralized which is generally something we
want to avoid.

3. We will need to find a way so that the IIoTC will not know the private key (pk) of the
accounts used for the microcontrollers.



Mitigation (2)
To ensure that the IIoTC will not have access to the pk of the microcontroller accounts we
will create the account after the microcontroller's installation to the car.

Here we must assume that the IIoTC will not have control over the microcontroller once
installed in the car.

The typical workflow for registering cars in the ICR DApp would be similar to this:

a) A smart car fleet owner makes a deal with the IIoTC:

b) The IIoTC creates an ICR SC with the fleet owner's address.

c) The IIoTC installs the necessary components to the cars (microcontrollers
/software/hardware).

d) The microcontrollers are activated, create their accounts and send the addresses to
the IIoTC.

e) The IIoTC registers the cars on the ICR SC.

Then, the workflow continues as we already know.



OWNER

USER

SCs

BLOCKCHAIN

SMART CAR

Lists Car
0.03 Eth

Pay 0.03 Eth
To Rent Car

Unlock Car with 
Signature

(1)

(3)

(4)

Unreserve Car

(5)

After 24 Hours

IIoTC

Makes Car
Available

(2)



Create the Function that Registers Cars
But with all that being said we can go to the coding part.

What we need to do is change the ICR SC so that only the IIoTC will be able to use the
registerCar function. However, instead of directly calling the registerCar function in
each ICR SC we will make it so that the ICRFactory will call the registerCar from the
ICRs.

As we mentioned before this is an external function call from a SC to a SC so what we are
going to do, is create a function called registerCarToICR that will handle the interaction
with ICR SCs.

It will take as parameter the ID of the ICR we want to register the car, the price of the car
and the microcontroller's address.

Only the owner of ICRFactory should call this function as we already discussed before.

Because we are making an external function call, we must make this function
nonReentrant.

function registerCarToICR(uint _icrId, uint _price, address _mc) external onlyOwner nonReentrant {}



Preparation
Before we continue to the functionality let's make some custom errors to:

1) Ensure that the microcontroller address is not used already in any ICR SC.

2) Ensures that the ICR SC is valid.

Let's also add an event for registering a car to an ICR SC.

Finally let's add a mapping that keeps track of all microcontrollers used in ICR SCs.

error ICRFactory__AddressIsMC(address _mc);
error ICRFactory__NotValidICRId(uint256 _icrId);

event CarRegisteredToICR(address indexed _icrAddress, uint256 indexed _carId, address indexed _mc);

mapping(address _address => bool _isMc) private s_isMc;



Function Explanation
We first check if _mc is already used.

Then we check if the ICR SC is valid.

If our checks pass, we register _mc as used.
function registerCarToICR(uint _icrId, uint _price, address _mc) external onlyOwner nonReentrant {

if(s_isMc[_mc]) {
revert ICRFactory__AddressIsMC(_mc);

}
if(_icrId >= s_nextIcrId) {

revert ICRFactory__NotValidICRId(_icrId);
}
s_isMc[_mc] = true;

}

Next, we will discuss the interaction with the ICR SC.
If you remember in one of our previous lessons, we mentioned that we need two things to
interact with any SC deployed on the blockchain:
1. The address of the SC
2. The ABI of the SC
Now in our case we have the ICR SC code imported in ICRFactory so to interact with the
ICR we can use it instead of the ABI.



Function Explanation (2)
We get the address of the ICR SC from s_icrs mapping:

address icrAddress = s_icrs[_icrId];

Next, we use the address to get an instance of the ICR SC since we have the ICR SC code
imported.

ICR icr = ICR(icrAddress);

Next, we emit the event we created signifying that a car was registered to an ICR SC. To
get the _carId for the emittion of the event we do an external function call to the
ICR using its getNextCarId function. We already did something similar to the deployICR
function to get the owner of the ICR.

emit CarRegisteredToICR(icrAddress, icr.getNextCarId(), _mc);

Finally, we make another external function call, this time for the registerCar function.
icr.registerCar(_mc, _price);

You will notice that we emit the event before we do the external function call that registers
the car. This serves two reasons. First, it is easy to get the ID of the next car to be registered
by calling the getNextCarId function and second external interactions should always happen
in the end of a function if possible.



Altering ICR Contract
In the ICR SC we need to make a few changes. First, now that ICRFactory is responsible
for registering new cars we need to alter the registerCar function.

To do this we will create a new immutable address variable that will store the
address of the ICRFactory.

address internal immutable i_factory;

constructor(address _owner) {
// … 
i_factory = msg.sender;

}

Remember that when we are doing external function calls from a SC to another the
msg.sender is the SC that makes the call. So, to use this to our advantage, when we deploy
the ICR SCs we make the i_factory equal to msg.sender.

Factory
Owner

Factory

deployICR

msg.sender:
Factory Owner ICR

constructor
msg.sender:

Factory



Altering ICR Contract (2)
Next in our registerCar function we change the check for the owner:

function registerCarToMapping(address _mc, uint256 _price) external nonReentrant {
if (msg.sender != i_owner) {

revert ICR__IsNotOwner(msg.sender);
}
//...

}

To check for the ICRFactory instead:
function registerCarToMapping(address _mc, uint256 _price) external nonReentrant {

if (msg.sender != i_factory) { // new
revert ICRRegistry__IsNotFactory(msg.sender); // new

}
//...

}

And with that we finished our SC.

You should try it out and see if and how it works.

Try to deploy ICRFactory and create an ICR. Then try to register cars to it.



Outro
This was a difficult lesson, but we finished it.

Next, we will make some last changes to the SC to make sure that we have our functionality ready
for the microcontrollers.


