
LESSON SC 3 – Conditional Logic and 
Loops

University of West Attica
Department of Electrical and Electronics Engineering

Ioannis Christidis
Christoforos Kachris

Support by Ethereum Foundation ESP



What will we accomplish!

This is the second lesson for our project Instant Car Renting.

In this lesson we will learn about conditional logic and loops in solidity.

We will continue on our ICR.sol.



Conditional Logic: if, else if, else

The if statement allows you to execute a block of code if a specific condition evaluates to true.
Solidity also supports else if and else for additional conditions and default behavior.
if (condition) {

// Executes if condition is true
} else if (anotherCondition) {

// Executes if anotherCondition is true
} else {

// Executes if no condition is true
}

For our ICR SC, we will create a function to change a car's occupied to true or false
depending on its previous state.
If car is occupied => make it unoccupied
If car is unoccupied => make it occupied



Conditional Logic: if, else if, else
(2)

function changeCarOccupie(uint256 _carId) public {
Car storage car = cars[_carId]; // find the car on the mapping
if(car.occupied) { // if it is occupied

car.occupied = false; // make it unoccupied
} else { // else

car.occupied = true; // make it occupied
}

}

The function is called changeCarOccupie and it takes as input the ID of the car we want to
change its state. Since we want to change the state, we will make a transaction when calling it.

To permanently make a change to an existing entry on our mapping we will need to use the
storage keyword. storage is a keyword that we use when we want to make a permanent change
in general. Any state variable we define in a SC is stored in storage.

So we find the Car with carId and we name it car. Now, we can access its properties by calling
car.property. In our example we can use it the occupied bool:

car.occupied



Conditional Logic: if, else if, else
(3)

function changeCarOccupie(uint256 _carId) public {
if(_carId < nextCarId){ // check if the car is registered

Car storage car = cars[_carId];
if(car.occupied) {

car.occupied = false;
} else {

car.occupied = true;
}

}
}

Previously, we mentioned that if we try to get the value by using a key that does not have a value
yet, we will still get a result, but it will be the default value of that data type.

In this situation this is dangerous since if we add as a parameter an ID of a car that has not yet been
rented it will change its occupied property to true since a bool default value is false.

To avoid that, we will add another if statement that checks if the ID we provide as input is less than
the nextCarId meaning that the car was already registered. If it is, then, we will change its state.



Loops

for (initialization; condition; increment/decrement) {
// Code to execute

}

Solidity supports three types of loops:

for Loop: Repeats a block of code a specific number of times.

while Loop: Repeats a block of code as long as a condition is true.

do...while Loop: Executes the block at least once and then checks the condition.

while (condition) {
// Code to execute

}

do {
// Code to execute

} while (condition);



Important Considerations for Loops in 
Solidity
Gas Costs:
Each iteration of a loop consumes gas. For long-running loops, this can exceed the block gas limit*,
causing the transaction to fail.

Avoid unbounded loops (e.g., while (true) or for loops with unknown termination).

Avoid Complex Logic:
Complex conditions or nested loops can increase gas usage significantly.

Use Alternatives When Possible:
If possible, use mappings or external tools to perform complex operations off-chain.

For these reasons we will not use any loops in our code.
*The block gas limit is the maximum amount of computational work, expressed in gas units, that can be
included in a single block by the network.



Outro
Finished the conditional logic and loops.

We also learned about storage!

Next, we will go over the concept of enum.


