
LESSON SC 4 – Enum
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP



What will we accomplish!

This is the third lesson and we will learn about enums.

We will continue on our ICR.sol.

University of West Attica 2



Enums

Enums in Solidity are user-defined types that allow you to define a finite set of constant values.

These constants are internally represented as a uint8, starting from 0 for the first constant,
1 for the second, and so on.

The default value of an enum is the first constant.

Enums prevent invalid values by restricting variables to predefined options.

Let's use an enum in our project.

In a previous lesson we mentioned that a car can be occupied or unoccupied. What if we wanted to
add more options?

Example: What if the owner of the car wants to do a service on it? In that case we would need a
third option other than occupied and unoccupied.

University of West Attica 3



Define an Enum

enum Status {
UNAVAILABLE, AVAILABLE, OCCUPIED 

}

For the reasons mentioned in the previous slide we will change occupied bool to an enum called
Status and it will have 3 options that as mentioned internally they will be represented as a uint8:

(0) => UNAVAILABLE (the car cannot be rented)

(1) => AVAILABLE (the car is available for rent)

(2) => OCCUPIED (the car is currently rented)

Remember that the default value for enums is the first element so for us it will be UNAVAILABLE.

Next, we will change the functionality of the SC to accept the new enum we created.

University of West Attica 4



Use Enum in Struct and Functions

struct Car {
address mc;
uint256 price;
Status status; // New status

}

We will start with the Car struct and instead of the bool occupied we will use our new
Status enum. So, we will add a Status called status and remove the bool occupied.

Next, we will change the registerCar function. In the line that we define the car, instead of
false we will use Status.UNAVAILABLE.

This will make the car unavailable for rent when the car is register and then the owner of the car will
have to make it available for rent.

This is good because it gives the owner some control, where previously anyone could rent the car
the instance it was registered resulting in possible problems for the owner.

function registerCar(address _mc, uint256 _price) public {
Car memory car = Car(_mc, _price, Status.UNAVAILABLE); // changed false to Status.UNAVAILABLE
uint256 currentCarId = nextCarId;
cars[currentCarId] = car;
nextCarId++;

}
University of West Attica 5



Use Enum in Struct and Functions (2)
Now we will change the function changeCarOccupied.

We will start be changing its name to changeCarStatus.

Since we do not have two options anymore, we will make the caller of the function to choose the
Status they want to change the car to, by adding it as input.

For example, the owner would want to change the Status of a car to AVAILABLE so it can be
rented or UNAVAILBLE to go the car for service. The user who rents the car would probably want
to change it to OCCUPIED.

function changeCarStatus(uint256 _carId, Status _status) public {
if(_carId < nextCarId){

Car storage car = cars[_carId];
car.status = _status;

}
}

University of West Attica 6



Code Complete
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
contract ICR {

enum Status {
UNAVAILABLE, AVAILABLE, OCCUPIED 

}
struct Car {

address mc;
uint256 price;
Status status;

}
mapping (uint256 _carId => Car _car) public cars;
uint256 public nextCarId;

function registerCar(address _mc, uint256 _price) public {
Car memory car = Car(_mc, _price, Status.UNAVAILABLE);
uint256 currentCarId = nextCarId;
cars[currentCarId] = car;
nextCarId++;

}

function changeCarStatus(uint256 _carId, Status _status) public {
if(_carId < nextCarId){

Car storage car = cars[_carId];
car.status = _status;

}
}

}

University of West Attica 7



Outro
You finished this lesson.

Task for home: Deploy the SC on Remix IDE, register a new car and try to change its Status.

Next, we will go over the concept of msg.sender in solidity.

University of West Attica 8


