
LESSON SC 6 – Access Control
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP



What will we accomplish!

In this lesson we will think about access control concepts.

And we will start with this question:

Who can register a car?

As we mentioned before, only the owner should be able to register cars on our SC however,
right now, anyone can do it. Test it yourself, by deploying the ICR SC, change the account and
try to register a car. You will see that anyone can register a car, which is something that we do
not want.

A SC deployed on the Blockchain is publicly accessible and anyone can interact with the SC
by calling its functions.

So, how can we fix this?



The if statement approach (NOT GOOD)

We want to implement some logic in the registerCar function that checks if the msg.sender is
the owner of the SC. That way we will only allow the owner to register cars.

Let's see an example:

function registerCar(address _mc, uint256 _price) public {
if (msg.sender == owner) {

// register car logic here
}

}

We can, easily, do this with an if statement, BUT there is a better and more efficient way.

The if statement will check if msg.sender is the owner and if they are not, it will not run the
register car logic, but the transaction will still happen even if we did not alter the state. Basically, we
wasted gas for no reason. Instead, we want to find another way.



The require approach
We talked about reverts of transactions before and we can use them to our advantage here. We can
write code that checks if the msg.sender is the owner and if it is not the transaction will revert
saving us some gas.

We can do this by using a require statement.

require(msg.sender == owner, "msg sender is not the owner");

This require will first check if msg.sender == owner:

true: the function will continue normally.

false: the function will not continue because the transaction will revert. You can also add
a string message like "msg sender is not the owner" to know why the function call failed.

It is generally a good practice to use require statements at the start of the function because as we
learned if a transaction reverts the gas consumed up to the point of revert will still be lost.

This is a good approach, but we can be even more efficient.



The custom error approach
From version 0.8.4 and above solidity added the custom error functionality which, as the name
suggest, allows us to create custom errors.

error errorName(params);

Custom errors work similar to require statements (revert the transaction) but they are better for
the following reasons:

• We do not need to add a string as error message which is the WORST type to use in solidity as
they aqcuire more space in storage and consume more gas when used.

• We can add parameters which can be information about the reverts (very useful during the
testing).

As a best practice we want custom errors to follow this structure for naming:

ContractName__ErrorName(params) but this is not mandatory. It helps however in case we have
multiple SCs (which we will have later) so that we know from which came the error.



Custom errors in ICR
Let's create a custom error for registerCar function. The custom errors can be be defined
inside or even outside of our SC. However, we will define it inside the SC above our enum Status.

error ICR__IsNotOwner(address _notOwner);

In the line above, you see the name of the error ICR__IsNotOwner which follows the best
practices and as a parameter we add an address. This will be the address of the account that
called our registerCar function AND is not the owner of the SC.

Notice that since the errors are defined outside of functions, they can be used in multiple functions,
similar to how we can call a state variable from any function.

Now, we need to use this error in the registerCar function. We want to revert the function call
only if the msg.sender is not the owner so we can add it inside an if statement at the start of
the function as shown below.

function registerCar(address _mc, uint256 _price) public {
if (msg.sender != owner) {

revert ICR__IsNotOwner(msg.sender);
}
// Rest of register car logic here

}



Actions of Entities
Now, let's talk about who can change the Status of a car. For example, if I was a user of the app,
should I be able to change the status of a car to UNAVAILABLE? Probably, no. So, let’s let's define
the actions for each entity.

OWNER

USER

MC

• Register Cars (Already covered)

• Change cars' status to available (for rent) or unavailable (for service or something
similar) when the car is not occupied (not rented by a user).

(UNAVAILABLE <=> AVAILABLE)

• Rent Cars: Pay some ether to change a car's status to occupied only if the car is
available for rent.

(AVAILABLE => OCCUPIED)

• Make cars available after a rental so they can be rented again.

(OCCUPIED => AVAILABLE)



Before Functions
Each of the bullets on the previous slide represent a function that we can build. registerCar is
already created so we must change the changeCarStarus function to 3 different functions one for
each entity (we will see later why we decided to split them instead of adding them all in one).

Before we start creating these functions, let's look the function changeCarStatus.
function changeCarStatus(uint256 _carId, Status _status) public {

if(_carId < nextCarId){ // notice this line
Car storage car = cars[_carId];
car.status = _status;

}
}

As you can see, the first thing we do in this function is check the ID of the car we want to change its
Status is less than nextCarId.

We did that to make sure that the car is registered before altering the state of the SC, but even if it is
not registered the transaction will still happen.

So, to avoid that, we will create a new custom error:

error ICR__InvalidCar(uint256 _carId);



Modifiers
This error we created is very useful since we are going to use it in the 3 functions that change the
status of cars but instead of adding it with an if statement every time, we will add it on a custom
modifier.

custom modifiers are functions that can be applied to other functions in a SC. They are used to
modify the behavior of functions or enforce certain conditions before the function's logic is executed.

Bellow you will see a custom modifier for our SC named carIsValid that takes as input the ID of a
car. Then, it checks if it is bigger than nextCarId. If it is, it will revert with our custom error, else it
will continue with the function.

modifier carIsValid (uint256 _carId) {
if (_carId >= nextCarId) {

revert ICR__InvalidCar(_carId);
}
_; // placeholder where the function logic will be inserted

}

You can define a custom modifier inside the SC using the modifier keyword. The `_;` symbol
defines where the function logic wil be inserted. In our example it will first run the check and then
the actual function.



Rent Car Function with Modifier
Now let's create one of the functions that changes the status. We will start with the easiest one
which is for the user. We want the user to be able to rent cars which means changing the Status
from AVAILABLE to OCCUPIED.

We will call this function rentCarand it will take as input the ID of the car to be rented.
function rentCar(uint256 _carId) public carIsValid(_carId) {}

Notice that after the public keyword, which is also a modifier but not custom, we added the
carIsValid modifier and we add as input the ID of the car for rent.

We will also create a custom error that reverts if the current status of the car is incorrect. For
example, for the rentCar function we want the car status to be AVAILABLE.
error ICR__CarIsNotInTheCorrectStatus(uint256 _carId, Status _status);

If it is, we will change its status to OCCUPIED.
function rentCar(uint256 _carId) public carIsValid(_carId) {

if (cars[_carId].status != Status.AVAILABLE) {
revert ICR__CarIsNotInTheCorrectStatus(_carId, cars[_carId].status);

}
Car storage car = cars[_carId];
car.status = Status.OCCUPIED;

}



Microcontrollers' Change Status
Function

Now, let's create the function that changes the status for the microcontroller.

First, we need to check if the car is valid, and we can do that by adding our custom modifier
carIsValid.

Next, we need to check if the address of the car's microcontroller (car.mc) is the same as the
msg.sender. if it is, change the car's status.

Try to make a custom error for that.

Then, we need to check if the status of the car is OCCUPIED.

And if all these checks pass, we change the car's status to AVAILABLE.

function changeCarStatusMc(uint256 _carId) public carIsValid(_carId) {
if (msg.sender != cars[_carId].mc) {

revert ICR__IsNotMc(_carId, msg.sender);
}
if (cars[_carId].status != Status.OCCUPIED) {

revert ICR__CarIsNotInTheCorrectStatus(_carId, cars[_carId].status);
}
Car storage car = cars[_carId];
car.status = Status.AVAILABLE;

}



Owner Changes Status Function

Similarly, we create the function of the owner.

Try to do it without copy, pasting the code for training.

TIP: We already have all the custom errors we need for that.

function changeCarStatusOwner(uint256 _carId) public carIsValid(_carId) {
if (msg.sender != owner) {

revert ICR__IsNotOwner(msg.sender);
}
if (cars[_carId].status == Status.OCCUPIED) {

revert ICR__CarIsNotInTheCorrectStatus(_carId, cars[_carId].status);
}
Car storage car = cars[_carId];
if(car.status == Status.AVAILABLE) {

car.status = Status.UNAVAILABLE;
} else {

car.status = Status.AVAILABLE;
}

}



Outro
Good job! This was a hard lesson.

We learned about access control concepts and saw a few ways to implement them:

If/then/else statements

Require statements

Custom errors

Custom modifiers

On the next lesson, we will make the rentCar function payable which means, that the users will
have to pay ETH to call it.


