
LESSON SC 8 – Events
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP

What will we accomplish!

In this lesson we will learn about events in blockchain.

In our SC, we created a function that a microcontroller can call to change the status of their
car.

But how does the microcontroller know which car it is registered to?

Or how does it know which is the account that occupied the car so it will be unlocked only
by it?

Or how does it know that the car is OCCUPIED and should change to AVAILABLE?

To inform entities outside of the blockchain about what is happening on-chain, we can use
events.

Events
Events in Solidity are a mechanism used to log information that is "emitted" during the execution
of a SC and can be consumed by external applications, such as front-end interfaces or analytics tools.
Events are an essential part of interacting with the Ethereum blockchain because they enable
communication between SCs and off-chain systems. A transaction is required to trigger an event
because events are part of the transaction log. If you remember, back in LESSON INTRO 4, when we
explained the transactions logs, there was a field called logs. The events we are going to create will
be logged there.

In our case, we will use events to notify the microcontrollers of our DApp. We will create an event
for each function that makes a transaction.

event CarRegistered(uint256 indexed _carId, address indexed _mc);

Here, you can see how an event is declared. They must be declared inside the SC (similar to state
variables). We tend to name the events like a result of the function where they are emitted (e.g.
function registerCar => event CarRegistered.

Events also take parameters. These are important information about the function that our
external applications can use (e.g. in the CarRegistered event, we emit the ID of the
registered car, and the microcontroller address to notify the microcontroller about the car it is
registered to).

indexed vs non-indexed

You will notice that in the parameters of the event there is an indexed keyword.

The indexed keyword in Solidity is used in event parameters to enable filtering and efficient
querying of events on the blockchain. You can mark up to three parameters of an event as indexed
and this allows you to search for specific values in those parameters when retrieving event logs.

Indexed parameters are stored in a special structure called topics in the event log which we
will see later.

Event parameters can be defined without indexedkeyword, but they will be stored in the data
section of the event log instead of the topics section. This means that they cannot be queried
directly. To find logs with specific non-indexed values, you'd need to retrieve all logs and then
manually process them off-chain.

To emit an event in a function we can do the following:

emit CarRegistered(_carId, _mc);

Logs

We will implement the CarRegistered event to our registerCar function and see the logs.
function registerCar(address _mc, uint256 _price) public {

// checks here (removed them for space in the slide)
Car memory car = Car(_mc, _price, Status.UNAVAILABLE);
uint256 currentCarId = nextCarId;
cars[currentCarId] = car;
nextCarId++;
emit CarRegistered(currentCarId, _mc);

}

Notice that we did not emit the price of
the car on the event. This is not
information that the microcontroller
needs.

Now compile and deploy ICR and then
use the registerCar function to
register a new car. If you look at the
console and find the transaction
you can look the logs:

[
{

"from": "0xaE036c65C649172b43ef7156b009c6221B596B8b", // contract address
"topic": "0x459e1abea8d58f1f390ad63904970bc184e7e026ff12f2f7f3c3aed6677ad187",

// The hash of the event's signature (CarRegistered(uint256,address)) (NOT important for now)
"event": "CarRegistered", // emitted event
"args": {

"0": "0", // first parameter
"1": "0x5B38Da6a701c568545dCfcB03FcB875f56beddC4", // second parameter
"_carId": "0", // first parameter
"_mc": "0x5B38Da6a701c568545dCfcB03FcB875f56beddC4" // second parameter

}
}

]

Rest of the events

From the logs we can understand that if we have :

1. the SC address

2. the event name

3. the expected topics

we can create off-chain logic that listens to the event when it is emitted.

For example, we can listen to CarRegister event from our DApp's microcontrollers to notify
them about the car they are regstered to.

Now let's create events for all ICR functions that make transactions.

event CarRented(uint256 indexed _carId, address indexed _mc, address indexed _user); // here we also emit the address of the
user that rented the car.

event CarIsAvailable(uint256 indexed _carId, address indexed _mc);
event CarIsUnavailable(uint256 indexed _carId, address indexed _mc);

Rest of the events (2)

Now let's do the same for changeCarStatusMc:
function changeCarStatusMc(uint256 _carId) public carIsValid(_carId) {

// checks here (removed them for space in the slide)
Car storage car = cars[_carId];
car.status = Status.AVAILABLE;
emit CarIsAvailable(_carId, car.mc);

}

function changeCarStatusOwner(uint256 _carId) public carIsValid(_carId) {
// checks here (removed them for space in the slide)
Car storage car = cars[_carId];
if(car.status == Status.AVAILABLE) {

car.status = Status.UNAVAILABLE;
emit CarIsUnavailable(_carId, car.mc);

} else {
car.status = Status.AVAILABLE;
emit CarIsAvailable(_carId, car.mc);

}
}

And for changeCarStatusOwner:

function rentCar(uint256 _carId) public payable carIsValid(_carId) {
// checks here (removed them for space in the slide)
Car storage car = cars[_carId];
car.status = Status.OCCUPIED;
emit CarRented(_carId, car.mc, msg.sender);

}

In rentCar we will add the account that called the function in the event parameters.

Outro
This was a lot of information!

We learned how to inform microcontrollers about what happens inside the blockchain.

And we talked about:

Events

Logs

Indexed parameters

You see that our SC is getting big. Next lesson we are going to split it by using inheritance.

