
LESSON MC3 – Synchronize MC
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP

What will we accomplish!
In this lesson we will continue building our ICR project.
Now that we finished the account creation, let's go to the next step which is finding the ICR and the Car
that our microcontroller is registered to. This essentially means that we need to find the ICR address that
has the Car with the microcontroller and the Car ID.
We discussed before that the microcontroller will create the account and then the owner will send its
address to IIoTC to register it to an ICR contract.
What synchronization needs to do:
It needs to check if the ICR contract and Car is already known. This means that it will check if the Car
ID and the ICR contract address are already saved in the .env
• If they are, it will load them
• If not, it will check in the ICR Factory if its address is used in an ICR contract with the getMcToIcr

function that we build in the last contract changes.
o If it is, it will search through every car in the ICR until it finds the car it is registered to and save it

along with the ICR address to the .env. (This is a safe measure in case it loses the data for any
reason, and it should not happen)

o If not, it will start a websocket connection, subscribing to the CarRegisteredToICR event
and wait until one is emitted with ICR address, Car ID and its own address. It will then save
the ICR address and Car ID to the .env.

Creating icr_synchronizer.py
We will need to do multiple calls and subscribe to an event so we will use AsyncWeb3 and
WebSocket for the synchronization.

Also, here we will need the ICR Factory address and ABI as well as the ICR ABI.

import os
from web3 import AsyncWeb3, WebSocketProvider
from eth_abi.abi import decode
from dotenv import load_dotenv, set_key
import load_json

Load environment variables from .env file
load_dotenv()

WebSocket RPC URL
WSS_URL = os.getenv("WSS_URL")
ICR Factory Address
FACTORY_ADDRESS = os.getenv("FACTORY_ADDRESS")
ICR Factory ABI
factory_abi = load_json.load_contract_abi("factory_abi.json")
ICR ABI
icr_abi = load_json.load_contract_abi("icr_abi.json")

Creating icr_synchronizer.py
Next let's make our entry point function for this one and start the WebSocket connection.

async def synchronize_with_icr():
print("Opening Async Web3")
try:

async with AsyncWeb3(WebSocketProvider(WSS_URL)) as w3:
await fetch_icr_info_or_subscribe(w3)

except Exception as e:
print(f"Error during WebSocket connection: {e}")

You can see the fetch_icr_info_or_subscribe function which we will build at the end.

We will now create the function that allows us to subscribe to CarRegisteredToICR
events. We will pass the WebSocket connection as a parameter here as well as the
address of the microcontroller. We are also going to write in the .env file in this function,
so we will also pass it as a parameter. We will add the logic inside a try/except block.

async def subscribe_to_car_registered_event(w3, mc_address, env_file=".env"):
try:

pass
except Exception as e:

print(f"Error during subscription: {e}")

Subscribing to car registered to ICR event
The event we are going to subscribe to is this one:
event CarRegisteredToICR(address indexed _icrAddress, uint256 indexed _carId, address indexed _mc);

As you can see it logs the address of the ICR contract and the Car ID that we want to
store, and it also emits the address of the microcontroller which we will compare
with the address in our microcontroller to ensure that it is the correct event.

We will do a similar process to the one we did at the example in the previous lesson.

car_registered_event_topic = w3.keccak(text="CarRegisteredToICR(address,uint256,address)") # topic we want to subscribe to

filter_params = {
"address": FACTORY_ADDRESS,
"topics": [car_registered_event_topic],

} # Parameters of the filter

subscription_id = await w3.eth.subscribe("logs", filter_params) # create subscription
print(f"Subscribing to CarRegisteredToICR event for ICRFactory at {subscription_id}")

async for payload in w3.socket.process_subscriptions(): # get the payload
result = payload["result"]

_icr_address = decode(["address"], result["topics"][1])[0] # ICR Address
_car_id = decode(["uint256"], result["topics"][2])[0] # Car ID
_mc = decode(["address"], result["topics"][3])[0] # Microcontroller Address

Comparing microcontroller addresses
Then we compare the microcontroller addresses and if they are the same, we store the
ICR Address and Car ID into the .env and we unsubscribe from the event.

if _mc.lower() == mc_address.lower():
set_key(env_file, "ICR_ADDRESS", _icr_address)
set_key(env_file, "CAR_ID", str(_car_id))
print(f"Match found! Stored ICR Address: {_icr_address}, Car ID: {_car_id}")

Stop subscribing to CarRegisteredToICR events
await w3.eth.unsubscribe(subscription_id)
print("Unsubscribed from CarRegisteredToICR events.")
return

subscribe_to_car_registered_event should only be called after we make sure that
the microcontroller does not already know the ICR Address and the Car ID. So, first,
we will check if ICR Address and Car ID exist or not in the .env and return true or
false accordingly.
def check_if_icr_info_exist(env_file):

print("Checking if ICR info exists")
existing_icr_address = os.getenv("ICR_ADDRESS")
existing_car_id = os.getenv("CAR_ID")

if existing_icr_address and existing_car_id:
print(f"ICR Address and Car ID already exist in .env: {existing_icr_address}, {existing_car_id}")
return True

return False

Search for ICR and Car ID in the Smart
Contract
If the data is not already stored in the .env we will try to find them in the ICR SC. We can
make sure if the microcontroller has already been registered by calling the getMcToIcr
function from the ICRfactory with the microcontroller address as a parameter. This will
return the ICR contract address that our microcontroller is registered to and if it is not
registered yet it will return address(0). So, we will create a function that does that.

async def search_for_icr_info(w3, env_file, mc_address, factory_address, factory_abi, icr_abi):
print("Check factory for matching ICR")

Interact with the factory contract
factory = w3.eth.contract(address=w3.to_checksum_address(factory_address), abi=factory_abi)
icr_address = await factory.functions.getMcToIcr(mc_address).call()

Check if the ICR address is not the zero address
zero_address = "0x00"
if icr_address.lower() == zero_address:

print("Matching ICR Address not found.")
return False

ICR address found
print(f"ICR Address found: {icr_address}")
print("Storing address to env")
set_key(env_file, "ICR_ADDRESS", icr_address) # store the address of ICR

Continue the Search
If we find an ICR address that our microcontroller is registered to, it will also be registered
to a car, and we need to find its ID. To find the car we will search the data of each car in that
ICR SC until we find a match. To do this, we will first need the next Car ID to use it for a
for loop through every car.

async def search_for_icr_info(w3, env_file, mc_address, factory_address, factory_abi, icr_abi):
… Rest of the code
icr = w3.eth.contract(address=w3.to_checksum_address(icr_address), abi=icr_abi)
next_car_id = await get_next_car_id(icr)
if next_car_id == 0:

return False
… More code

async def get_next_car_id(icr):
print('Retrieving next car ID')
next_car_id = await icr.functions.getNextCarId().call()
if next_car_id == 0:

print("No cars registered in the ICR contract.")
return 0

return next_car_id

Loop through the cars
Now that we have the Next Car ID, we can make a loop to get each of the car data from
the blockchain and check if their microcontroller address matches the one that this
microcontroller has. After that we will save the Car ID.

async def search_for_icr_info(w3, env_file, mc_address, factory_address, factory_abi, icr_abi):
… Rest of the code
Find matching car
found = await find_matching_car(icr, mc_address, next_car_id, env_file)
if not found:

print("No matching car found in the ICR contract.")
return found
… More code

async def find_matching_car(icr, mc_address, next_car_id, env_file=".env"):
print("Check each car to find the match")
for i in range(next_car_id):

car = await icr.functions.getCar(i).call()
mc = car[0] # First element of the tuple is the microcontroller address
if mc.lower() == mc_address.lower():

set_key(env_file, "CAR_ID", str(i))
print(f"Car found: ID {i} with Microcontroller {mc_address}")
return True # Return True when a matching car is found

return False # Return False if no matching car is found

Finish the script
And finally, now that we have all the functionality we need, we can build the function
fetch_icr_info_or_subscribe.
async def fetch_icr_info_or_subscribe(w3, env_file=".env"):

MC_ADDRESS = os.getenv("MC_ADDRESS")
if check_if_icr_info_exist(env_file): # Check if ICR_ADDRESS and CAR_ID are already set

print("ICR exists, continueing")
return # Exit if ICR_ADDRESS and CAR_ID are already set

print("ICR info do not exist")
print("Try to find matching ICR")
try:

Process the ICR contract
found = await search_for_icr_info(# Check if ICR_ADDRESS and CAR_ID are already stored in an ICR cotnract

w3,
env_file,
MC_ADDRESS,
FACTORY_ADDRESS,
factory_abi,
icr_abi

)
if not found:

print("No matching car found.")
Call the function for subscribing to events
await subscribe_to_car_registered_event(w3, MC_ADDRESS, env_file)

except Exception as e:
print(f"Error occurred: {e}")

Update main.py
Now, we can just call the function synchronize_with_icr in the main function.

async def main():
Load environment variables from .env
load_dotenv(override=True)
env_file = ".env"
Check if the .env file exists and has PUBLIC_ADDRESS and PRIVATE_KEY
if not path.exists(env_file) or not os.getenv("MC_ADDRESS") or not os.getenv("MC_PRIVATE_KEY"):

print("No account found. Creating a new Ethereum account...")
Create an address and private key
create_and_save_account(env_file)
load_dotenv(override=True)

else:
If account already exists, load it
MC_ADDRESS = os.getenv("MC_ADDRESS")
print("Account already exists:")
print(f"Public Address: {MC_ADDRESS}")

print("Fetch ICR data from event or already existing")
Synchronize with ICR Contract
await synchronize_with_icr()
load_dotenv(override=True)

Outro
Next let's go over creating the script to unlock the car.

