
LESSON MC5 – Change Car Status
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP

What will we accomplish!
In this lesson we will create two scripts:

1) A script that periodically checks the status of the car

2) A script that makes a transaction to the blockchain in order to change the car's status

The process will work as follows:

We will first get the renting time from the blockchain. With that we will define the interval between checks
on the car's status. For this example, we will go with half the renting time so if the time is 1 hour we will do a
check every half hour. With that, we will be sure that we do not miss the time needed to change the car
status.

When a check happens, and the car is OCCUPIED, we will calculate the time that the microcontroller should
wait before making the transaction to change the status of the car to AVAILABLE. For example, if renting time
is 1 hour and we check when the car is already OCCUPIED for 20 minutes, we will wait for 40 minutes to
complete the hour and then make a transaction to change status.

Creating change_car_status.py
We will start with the easier script which is going to be the change_car_status.py.

We will define an async function called change_car_status.

Since we will be making a transaction, we will need the address and the pk of the
microcontroller.

Then we will wait for the time needed.
async def change_car_status(w3, icr, car_id):

MC_ADDRESS=os.getenv("MC_ADDRESS")
MC_PRIVATE_KEY=os.getenv("MC_PRIVATE_KEY")

remaining_time = get_remaining_time(w3, icr, car_id) # Get the waiting time before making the transaction
if remaining_time > 0:

print(f"Waiting {remaining_time + 120} seconds")
await asyncio.sleep(remaining_time + 120) # Wait for waiting time plus 2 minutes
2 minutes ensure that the block with the correct time has been created

else:
print("Renting time is over.")

print("Starting transaction to change car's status")
pass

We will build get_remaining_time later.

Creating change_car_status.py(2)
Next, we make the transaction. We will call the function changeCarStatusMc with the
Car ID as input that only the microcontroller of the car is able to call.

async def change_car_status(w3, icr, car_id):
… Rest of the logic
…

Build the transaction
transaction = icr.functions.changeCarStatusMc(car_id).build_transaction({

"from": MC_ADDRESS,
"nonce": w3.eth.get_transaction_count(MC_ADDRESS),
"gas": 200000,
"gasPrice": w3.to_wei("20", "gwei"),

})

Sign the transaction
signed_tx = w3.eth.account.sign_transaction(transaction, MC_PRIVATE_KEY)

Send the transaction
tx_hash = w3.eth.send_raw_transaction(signed_tx.raw_transaction)

Wait for the transaction receipt
receipt = w3.eth.wait_for_transaction_receipt(tx_hash)

print(f"Transaction successful with hash: {w3.to_hex(tx_hash)}")
print("Status Changed")

Creating get_remaining_time function
The get_remaining_time function will work as follows:

1) Get the car and the time it was last rented.

2) Calculate the time that car's status should change.

3) Calculate the time the microcontroller should wait before making the transaction.
def get_remaining_time(w3, icr, car_id):

car = icr.functions.getCar(car_id).call() # Get the car
time_of_last_rent = car[3] # From the car get the time where the car was rented

rent_time = icr.functions.getRentTime().call() # Get the renting time
time_to_change_status = time_of_last_rent + rent_time # Calculate the time the staus of the car should change

current_block_timestamp = w3.eth.get_block('latest')['timestamp'] # Get the timestamp of the latest block
remaining_time = time_to_change_status - current_block_timestamp # Calculate the time the microcontroller should wait

return remaining_time # Return the time in seconds

Creating check_car_status script
Now let's go over creating the check_car_status script.

First of all, we will define a function that retrieves the car data from the SC and checks if the
car's status is OCCUPIED. If it is, it will trigger the change_car_status script.
import asyncio
from change_car_status import change_car_status

lock = asyncio.Lock()

async def check_car_status(w3, icr, car_id) :
async with lock:

print("Checking car status")
car = icr.functions.getCar(car_id).call() # Get the car
status = car[2] # Get the status of the car
if status == 2: # Check if status is OCCUPIED -> From the Enum Status {0:UNAVAILABLE, 1:AVAILABLE, 2:OCCUPIED}

print("Car status is Occupied. Enabling Change Car Status")
await change_car_status(w3, icr, car_id) # Call the change car status
return True

else:
print("Car is not Occupied")
return False

Creating check_car_status script (2)
Next, we will create a function that, every half of renting time, will call the
check_car_status function.

async def periodic_check_car_status(rent_time, w3, icr, car_id):
interval = rent_time/2 # calculate the time per check
while True:

if await check_car_status(w3, icr, car_id): # check if status needs update
continue

else:
await asyncio.sleep(interval) # sleep

Now let's combine all the scripts in the main function.

Finishing the main.py
Finally let's build the full main function. We will use asyncio.gather to run our two
functions at the same time and give them the necessary parameters.

async def main():
Load environment variables from .env
Check if the .env file exists and has PUBLIC_ADDRESS and PRIVATE_KEY

Create an address and private key
If account already exists, load it

… Rest of the code here
Synchronize with ICR Contract
await synchronize_with_icr()
load_dotenv(override=True) # Reload after all .env varisables are saved
w3 = https_connection_to_bc() # Make a connection with the blockchain
ICR_ADDRESS = os.getenv("ICR_ADDRESS") # Load the ICR Address
icr_abi = load_json.load_contract_abi("icr_abi.json") # Load the ABI of ICR
icr = w3.eth.contract(address=w3.to_checksum_address(ICR_ADDRESS), abi=icr_abi) # Make an ICR contract instance
rent_time = icr.functions.getRentTime().call() # Receive the renting time to calculate the interval for the periodic car status

checks
CAR_ID = int(os.getenv("CAR_ID")) # Load the car id
At the same time

Peridically check if car is occupied (and change status to available if needed)
Wait for a signed message from a user to unlock the car

await asyncio.gather(
periodic_check_car_status(rent_time, w3, icr, CAR_ID),
handle_signing_for_unlock(w3, icr, CAR_ID)

)

Outro
In the next lesson we will try a full example run of our script.

