
LESSON MC6 – Full Example
University of West Attica

Department of Electrical and Electronics Engineering
Ioannis Christidis

Christoforos Kachris

Support by Ethereum Foundation ESP

What will we accomplish!
In this lesson we will try our SC and python scripts in Sepolia testnet.

We will need:

1. Metamask Wallet

2. Sepolia ETH for testing (0.3 should be enough)

3. Three Accounts for:
o IIoTC (0.15 ETH)
o OWNER (0.05 ETH)
o USER that will rent the car (0.1 ETH)

Deploy the contracts
1. In Remix IDE open ICRFactory compile and on the Deploy

and Run Transactions Sidebar go to the Environment and
choose Injected Provider – MetaMask. MetaMask will pop up
asking you to connect your account in Remix IDE. Make sure
that you are on the Sepolia testnet.

2. Then, using the IIoTC account, deploy the ICRFactory. Every
time you attempt to make a transaction MetaMask will pop up
to confirm the transaction.

3. Next with the same account call the deployICR function
adding as parameter the address of OWNER.

4. From the event ICRDeployed find the newly created ICR
address and paste next to the At Address button under the
Deploy button. Change the SC above from ICRFactory to
ICR and press the At Address button. The new ICR SC will
appear under the ICRFactory.

Set up and Run the microcontroller
In the microcontroller's .env file add the following:
USERS_PRIVATE_KEY= <USER-PRIVATE-KEY>
OWNERS_PRIVATE_KEY= <OWNERS-PRIVATE-KEY>
HTTPS_URL="https://eth-sepolia.g.alchemy.com/v2/<KEY>"
WSS_URL="wss://eth-sepolia.g.alchemy.com/v2/<KEY>"
FACTORY_ADDRESS='<ICR-FACTORY-ADDRESS>'

Next run your script from main.py
python3 main.py

You will receive an outcome similar to this:
No account found. Creating a new Ethereum account...
New Ethereum account created:
Public Address: <NEW-ADDRESS-STORED-IN-ENV>
Account saved to .env. Keep this file secure!
Fetch ICR data from event or already existing
Opening Async Web3
Checking if ICR info exists
ICR info do not exist
Try to find matching ICR
Check factory for matching ICR
Matching ICR Address not found.
No matching car found.
ICR Address is the zero address. We will subscribe to Car Register To ICR event.
Subscribing to CarRegisteredToICR event for ICRFactory at <ICR-FCTORY-ADDRESS>

Register microcontroller
Our microcontroller created an account (stored address and pk in the .env), searched in the
ICRFactory to see if it was already registered and because it was not, it subscribed to
CarRegisteredToIcr event.
Back in Remix IDE, with the IIoTC account, call the function registerCarToIcr from the ICRFactory
with:
• ICR ID = 0 (the first ICR),
• price = 100000000000000 (0.0001 ETH, minimum car renting price)
• mc address (get it from the console logs)
When the transaction completes, you will see a log to the microcontroller's console.
Event received: ICR Address: <ICR-ADDRESS>, Car ID: 0, Microcontroller Address: <MC-ADDRESS>
Match found! Stored ICR Address: <ICR-ADDRESS>, Car ID: 0
Unsubscribed from CarRegisteredToICR events.

The ICR Address and the Car ID, that our microcontroller is registered to, is
successfully saved to the .env.
Now you should send some ETH to the address of the microcontroller (from
MetaMask). If you do not do this, you will not be able to change the car's status
to AVAILABLE since we added that logic in the ICR SC.

Check the Logs
If you check the logs and you will see the following:
Connected to the Sepolia testnet successfully!
Chain ID: 11155111
Checking car status
Car is not Occupied
Enter your Message:

The first two logs are from the HTTPS connection to the Sepolia testnet.

The next two logs are from the periodic checks to the ICR SC to check the status of the car. Since
the car is not rented, the logs state it is not occupied. This logs will appear every 3 minutes since
the rent time in the ICR SC is 6 minutes, and we make checks every half of renting time (6min
/2 = 3min).

uint256 internal constant RENT_TIME = 6 minutes;

The last log says "Enter your message" and it is from the unlock_car_by_message script.

We can try this now to check how it works. In the ICR SC we defined that when the car is not
OCCUPIED the current renter will be the OWNER. So, we can sign a message with the OWNER's pk
to unlock the car right now. If the car is OCCUPIED, we have to use the pk of the USER that rented
the car.

Changes to signing_message script (1)
We will do the following changes to the signing_message.py from the Lesson MC1 – Intro to
web3.py.

We include the pks of the OWNER and the USER that will rent the car later. We also changed the
message to "Unlock Car".

from web3 import Web3
from eth_account.messages import encode_defunct
import os
from dotenv import load_dotenv

load_dotenv(override=True)

HTTPS_URL = os.getenv("HTTPS_URL")

Connect to a Web3 provider
w3 = Web3(Web3.HTTPProvider(HTTPS_URL))

Private key of the signers
OWNERS_PRIVATE_KEY = os.getenv("OWNERS_PRIVATE_KEY")
USERS_PRIVATE_KEY = os.getenv("USERS_PRIVATE_KEY")

Message to sign
message = "Unlock Car" # New message
Hash the message
message_hash = encode_defunct(text=message)

Changes to signing_message script (2)

Now if we run this script, we will receive an output like this:

… Rest of the code
Sign the hashed message
owners_signed_message = w3.eth.account.sign_message(

message_hash, private_key=OWNERS_PRIVATE_KEY
)
owner_address = w3.eth.account.recover_message(message_hash, signature=owners_signed_message.signature)

users_signed_message = w3.eth.account.sign_message(
message_hash, private_key=USERS_PRIVATE_KEY

)
users_address = w3.eth.account.recover_message(message_hash, signature=users_signed_message.signature)

Print the signature components
print("Owner's signed message signature: ", owners_signed_message.signature)
print("Owner's address: ", owner_address)

print("Users's signed message signature: ", users_signed_message.signature)
print("Users's address: ", users_address)

Owner's signed message signature: b"BEm\xd9SZ'\x98\xb85w\x17........4(h\x81I\xf0\xacN\xf9\x91\xbeU[T\xd1\x93\xb5\xd0\x00\xa0\xbf3\x81\x1d\xa8.\x1b"
Owner's address: <OWNER-ADDRESS>

Users's signed message signature: b'\x1a\xea\xee;a9\n\xc2\xd3\x86\xc0|\x89\xbeL...........\x87x9a\x95w0\xa5\x1e\x9aMU\x87\xba\xd1Q\x9a\xfa\xa3\x8d-!!\x1c'
Users's address: <USER-ADDRESS>

Getting signed message signature
You can copy the highlighted text which is the OWNER's signed message signature as shown below:

Owner's signed message signature: b"BEm\xd9SZ'\x98\xb85w\x17........4(h\x81I\xf0\xacN\xf9\x91\xbeU[T\xd1\x93\xb5\xd0\x00\xa0\xbf3\x81\x1d\xa8.\x1b"
Owner's address: <OWNER-ADDRESS>

Users's signed message signature: b'\x1a\xea\xee;a9\n\xc2\xd3\x86\xc0|\x89\xbeL...........\x87x9a\x95w0\xa5\x1e\x9aMU\x87\xba\xd1Q\x9a\xfa\xa3\x8d-!!\x1c'
Users's address: <USER-ADDRESS>

If you paste it to the "Enter your message" you will see that the car will unlock for 60 seconds
Enter your Message: BEm\xd9SZ'\x98\....xf\xe4(h\x81I\xf0\xacN\xf9\x91\xbeU[T\xd1\x93\xb5\xd0\x00\xa0\xbf3\x81\x1d\xa8.\x1b
User <OWNER-ADDRESS> trying to unlock the car
Checking if user <OWNER-ADDRESS> is current renter
User <OWNER-ADDRESS> is current renter
Car is unlocked for 60 seconds
Car is locked again.

If you paste the USER's signed message signature you will see that the car will not unlock since the
USER is not the current renter yet.
Enter your Message: \x1a\xea\xee;a9\n\xc2\xd3\x86\x...VBU\xb2,\xbf\xe7z\x13[}\x9a\x95w0\xa5\x1e\x9aMU\x8\xba\xd1Q\x9a\xfa\xa3\x8d-!!\x1c
User <USER-ADDRESS> trying to unlock the car
Checking if user <USER-ADDRESS> is current renter
User <USER-ADDRESS> is not current renter

Renting Car

To rent the car, we need to make the car AVAILABLE as the OWNER of the
car, so back in Remix IDE, in the ICR SC, call the function
changeCarStatusOwner with Car ID = 0 to change the car's status
to AVAILABLE.

Make sure you use the OWNER's address, and that you already funded
the microcontroller address of the car with some ETH otherwise the
transaction will revert.

Next change your account to the USER and rent the car by calling the
rentCar function with Car ID = 0.

Remember that this function is payble so add 100000000000000 wei
(0.0001 ETH, minimum car renting price) to the VALUE field on Deploy
and Run Transactions sidebar.

Renting Car (2)
Now that the car is rented by the USER, try to unlock it by pasting the signed message
signature of the USER (highlighted) as message to the microcontroller.

Enter your Message: \x1a\xea\xee;a9\n\xc2\xd3\x8...6IVBU\xb2,\xbf\xe7z\x13[}\x9a\x95w0\xa5\x1e\x9aMU\x87\xba\xd1Q\x9a\xfa\xa3\x8d-!!\x1c
User <USER-ADDRESS> trying to unlock the car
Checking if user <USER-ADDRESS> is current renter
User <USER-ADDRESS> is current renter
Car is unlocked for 60 seconds
Car is locked again.

Owner's signed message signature: b"BEm\xd9SZ'\x98\xb85w\x17........4(h\x81I\xf0\xacN\xf9\x91\xbeU[T\xd1\x93\xb5\xd0\x00\xa0\xbf3\x81\x1d\xa8.\x1b"
Owner's address: <OWNER-ADDRESS>

Users's signed message signature: b'\x1a\xea\xee;a9\n\xc2\xd3\x86\xc0|\x89\xbeL...........\x87x9a\x95w0\xa5\x1e\x9aMU\x87\xba\xd1Q\x9a\xfa\xa3\x8d-!!\x1c'
Users's address: <USER-ADDRESS>

You will see that the car successfully unlocks to the current renter.

Try it with the OWNER and see that that car is staying locked.

Microcontroller makes a transaction
Now, when a periodic check happens (every 3min – half the renting time) you will see the following
log:

Starting transaction to change car's status
Transaction successful with hash: <TRANSACTION-HASH>
Status Changed

Checking car status
Car status is Occupied. Enabling Change Car Status
Waiting X seconds

The microcontroller detected that the car is occupied.

X = (time of last rent) + (renting time) - (latest block timestamp) + 120
second (to ensure that a block with the correct timestamp has been minted)

Then, it will log something similar to this:

This means that a transaction was made that changed the car status from our microcontroller's
account. We also received the transaction hash.

The process will continue until the microcontroller stops.

Outro
This concludes our Smart Contract and IoT course!

