LESSON INTRO 5 — Variables

University of West Attica

Department of Electrical and Electronics Engineering
loannis Christidis
Christoforos Kachris

Support by Ethereum Foundation ESP

What will we accomplish?

We will see the variable types of solidity.

Understand how variables work in SCs.

Learn the basics of operations available in each type.

Although not required it is a good practice to write the code yourself to test it as we
progress.

University of West Attica ©

Integers (1nt) ¥

int in Solidity is a signed integer type. It can store both positive and negative whole numbers.

You can define the size of the integer by specifying it after the int (e.g., int64).
int is by default 256 bits wide. This means that int = int256.

There are also smaller sizes available: int8, intl6, int32, int64, intl128, int256.

As a size comparison, the minimum and maximum values from int8 and int256 are:
-128 <= int8 <= 127, -27255 <= int256 <= 27255 -1

Its default value is zero (9).

int number;

int8 negativeNumber = -3;
int32 negativeNumber = 18;

University of West Attica © 3

Integers (2) ,&

You generally want to avoid using integers and stick unsigned integers (uint) because of the
following reasons:

- OQverflow and Underflow: Before Solidity ©0.8.0, int values could silently wrap around if

they exceeded their range. After version ©0.8.0, overflow and underflow checks are
automatically enforced, and the SC will revert if the value exceeds the allowable range.

- Gas Costs: int operations are more expensive (not much) than uint due to the additional logic
for handling the sign.

When to use int?

- When your application logic requires negative numbers. (e.g., temperature measuring)

Why use smaller int?

- When stored in an array or struct, smaller types can save space by packing multiple smaller
variables together. (we will learn arrays and structs later)

University of West Attica © 4

Unsigned Integers (uint) % X

uint stands for unsigned integer, meaning it can only store non-negative whole numbers (0 and
above).

You can define the size of the unsigned integer by specifying it after the uint (e.g., uint64).
uint is by default 256 bits wide. This means that uint = uint256.

There are also smaller sizes available (e.g., uint8, uint1se, ..., uint256).

As a size comparison, the minimum and maximum values from uint8 and uint256 are:
@ <= uint8 <= 255, O <= uint256 <= 27256 - 1

Its default value is zero (O).

uint number;

uint32 negativeNumber = 18;

University of West Attica © 5

Unsigned Integers (2) % X

You generally prefer to use unsigned integers and avoid signed integers (int) because of the
following reasons:

- Larger Range (e.g. uint8 can be up to 255 while an int8 only goes up to 127)

- Using uint avoids the complexity of handling negative numbers in SC logic.

- Gas Efficiency: Since uint doesn’t require handling a sign, operations are cheaper in terms of
gas compared to int.

Why use smaller uint?

- When stored in an array or struct, smaller types can save space by packing multiple smaller
variables together. (we will learn arrays and structs Iater).

Be aware of overflows and underflows since they can break your code's functionality. (e.g. when you
have a function that increments a uint8 and it reaches the maximum value, the function will be
unusable since the transaction will revert every time you try to call it.)

University of West Attica © 6

Operations of 1nt and ulnt

Arithmetic Operations:

Addition (+): Adds two integers or unsigned integers.
Subtraction (-): Subtracts one integer unsigned integer from another.
Multiplication (*): Multiplies two integers or unsigned integers.

Division (/): Divides two integers or unsigned integers. Note: Division truncates the
decimal part for integers or unsigned integers.

Modulo (%): Returns the remainder of a division.

Comparison Operations:

Equality (==): Checks if two integers or unsigned integers are equal.
Inequality (!=): Checks if two integers or unsigned integers are not equal.

Grearl;er than (>, >=): Checks if one integer or unsigned integer is greater than
another.

Less than (<, <=): Checks if one integer or unsigned integer is less than another.

University of West Attica ©

Booleans (bool) ,&

bool is the Boolean data type in Solidity.

It can either be true or false.
Boolean variables are used for conditions, flags, and decision-making in SCs.
The default value of a bool variable is false.

Solidity allocates 1 byte (8 bits) to store a single boolean variable in storage.

Boolean variables can be very gas-efficient when they are packed in a struct or array as in that
case, they only store a single bit of data.

bool isFalse;
bool isTrue = true;

University of West Attica © 8

Operations of bool

Logical Operations:
- AND (&&): Returns true if both operands are true.

- OR (| |): Returns true if at least one operand is true.

- NOT (!): Reverses the boolean value (true becomes false, and vice versa).

Comparison Operations:
- Equality (==): Checks if two boolean values are equal.

- Inequality (! =): Checks if two boolean values are not equal.

University of West Attica ©

Strings (string) % X

A stringin Solidity is a dynamically sized UTF-8 encoded sequence of characters.

Strings are dynamically sized, meaning their length can vary. This differentiates them from fixed-
size types like uint.

strings are stored as a sequence of bytes in Solidity.

The default value of an uninitialized string is an empty string ("").
Avoid using strings:

- Strings consume significant gas because they are dynamically sized and require more storage
space compared to fixed-size types (111 BYTE EACH CHARACTER!!).

- String operations like concatenation, comparison, or manipulation are gas-intensive. It’s often
better to handle strings off-chain and store or use the result on-chain.

- Consider using the bytes type instead (We will talk about it after the strings)

University of West Attica © 10

Strings (2) s,

To use a string as parameter or for a local variable in a function vou will need to store it in

memory. We will talk about memory in the future but for now here is an example of how to use a
string in memory.

string public storedWord;

function setWord(string _storediWord) public {
storedWord = _storedWord;

}

function setWordWithoutParameter() public {
string wordToBeStored = "word";
storedWord = wordToBeStored;

}

University of West Attica © 11

Bytes bytes ,&

Bytes is a dynamic array of bytes used to store raw binary data.

Solidity also provides a fixed-size version: bytesl to bytes32, where the size is fixed and cannot
be changed after declaration.

The default value for both bytes and fixed-size bytes is an array filled with zeros.

For bytes32: 0x00. .0 and for bytes: "" (empty array)

public data;
function setData(_data) public {
data = _data;
}

function getData() public view
data;

}

bytes4 public fixedData;
function setFixedData(bytes4 _data) public {
fixedData = _data;

}

University of West Attica © 12

Operations of string and bytes % X

Comparison: Fixed-size bytes can be compared directly using the standard comparison operators
==, l=, etc.) because Solidity supports direct equality checks for these types.

Comparison of strings and dynamic size bytes cannot be directly compared using the == operator
because the lanquage does not support native string comparison like some other programming
languages. Instead, string comparison is done using hashing. Bellow you see an example of
comparing strings or dynamic size bytes a and b. (Do not worry about the meaning of
kReccak256(abi.encodePacked()) for now, we will not need it for this course. Just know that
with it, we can hash anything.)

bool isEqual = ¢ .encodePacked(a)) == ¢ .encodePacked(b));

Concatenation: As of version 0.8.12 of solidity concat support has been added for strings.

function concatenateStings(string b) public pure
string.concat(a,b);

}

Concatenation of bytes must be done similarly to their comparison. This means that we must use
abi.encodePacked.

function concatenateMultiple(s s c) public pure
.encodePacked(a, b, c);

} 13

Addresses address ,&

An address in Solidity is a 20-byte (160-bit) value that represents an Ethereum address.

Ethereum addresses can be externally owned accounts (EOAs) (controlled by private keys) or SC
addresses (deployed SCs).

Solidity has two address types:

- The standard address type that provides basic methods for interaction, like balance checks or
sending ETH.

- Payable address: A specialized address type that can receive and send ETH. Use payable
address when working with ETH transfers.

The default value of an address is address(0) = 0x00...0.

Along with uint, address is the most used types when writing SCs.

address public myAddress = ©x5B38Da6a701c568545dC+cBO3FcB875f56beddC4;

address payable public myAddress = 0x5B38Da6a701c568545dCtcBO3FcB875f56beddC4;

University of West Attica © 14

Outro

Great, now you know the basics of solidity variable.
In the next lesson we will start building our project.
The project will be 10T based!

Test: Write a SC like SimpleStorage for each type.
We already did it for uint!

pragma solidity ©.8.26;
SC SimpleStorage {
uint256 favouriteNumber;

function setFavouriteNumber(uint256 _favouriteNumber) public {
favouriteNumber = _favouriteNumber;

}

function getFavouriteNumber() public view (uint256) {
favouriteNumber;

}

University of West Attica ©

15

